
Pose Estimation for Evaluating Standing Long Jumps via Dynamic
Bayesian Networks

Hui-Huang Hsu1, Yao-Bao Yen1, Chu-Song Chen2, and Chun-Ta Ho3
1Department of Computer Science and Information Engineering, Tamkang University

2Institute of Information Science, Academia Sinica
3Department of Multimedia and Animation Arts, National Taiwan University of Arts

Taipei, Taiwan, R.O.C.
E-mail: h_hsu@mail.tku.edu.tw

Abstract

A system is developed for analyzing poses in a
standing long jump automatically. In the system,
silhouette of the jumper is segmented from the
background first. A thinning algorithm is then used to
find a rough skeleton from the silhouette. Some image
processing techniques are applied to make the
resulted skeleton smoother and simpler. Key points
are extracted from the skeleton. Finally, the dynamic
Bayesian network (DBN) is used to determine the
corresponding pose from the key points. The
experimental result shows that pose estimation
accuracy is quite good. According to the standing
long jump standards, incorrect movements at
different stages of the jump can thus be identified.

Keywords: Motion analysis, Pose estimation,
Thinning, Dynamic Bayesian networks, Standing long
jumps

1. Introduction

In physical education, doing the standing long
jump in the right way is one important development
of sports skills for primary school students. A video
clip with a complete standing long jump contains
about 40 frames. It is costly to have the teacher watch
a lot of such video clips to determine bad movements
of certain students so that advices can be provided to
the students. There is a lot of work related to motion
analysis of sports video in the literature. But, none of
previous research worked on this problem. It is
desired to have a system that can estimate the poses
during the jump from a video clip automatically. With
the determined poses in all the frames, bad
movements can thus be identified. Such a system can
further be used as a tutor for the student to do
self-training. This problem should be easier than
other motion analysis problems, like golf swinging
and ball throwing since it mostly needs only 2D

information from the side. Standing long jump video
clips can be taken from the left-hand side of the
jumper. This 2D information is sufficient to judge the
movement of a jump. On the other hand, both golf
swinging and ball throwing need 3D information.
Either the 3D information is extracted from scenes
taken by one video camera, or two video cameras are
used to capture the movement from different angles
at the same time.

In our previous work, the genetic algorithm was
used to construct a skeleton from the extracted
silhouette of the jumper [1]. The skeleton is defined
by a stick model with the major joints of the human
body. And it represents the pose of the jumper in each
frame very well. However, the size of each stick
needs to be given by the user beforehand. Also, the
search process of the genetic algorithm is very
time-consuming. Therefore, the thinning algorithm is
utilized instead in this paper [6]. The thinning
algorithm is much simpler. Although the generated
skeleton is somewhat rough and not as precise as the
predefined stick model, the result still can provide
meaningful information about the pose. This
information is then further processed by the DBN [2],
which was not done in our previous research.

There are three parts of such a system: (1) human
detection, (2) pose estimation, and (3) scoring [1]. In
this paper, we focus on the second part – pose
estimation. It is divided into two stages. In the first
stage, the Z-S thinning algorithm is used to find a
rough skeleton. Key points of the skeleton are
extracted. Coded information of the relative positions
of the key points is then used as the input to the DBN
to do pose classification.

The rest of the paper is organized as follows.
How the human object is extracted from the
background is described in Section 2. Skeleton
determination by the thinning algorithm is presented
in Section 3. Pose classification by the DBN is
delineated in Section 4. Experimental results are
shown in Section 5. And finally a brief conclusion is
drawn in Section 6.

The 28th International Conference on Distributed Computing Systems Workshops

1545-0678/08 $25.00 © 2008 IEEE
DOI 10.1109/ICDCS.Workshops.2008.72

36

2. Object extraction

A simple algorithm modified from the one in [5]
is used here to extract the human object. The
algorithm was designed to do object tracking. The
advantage of this method is that it is simple and fast.
Suppose that the input image is N×N. The algorithm
is described in the following.
i. Produce an average background matrix Bave over

a moving window of n×n.

where i and j denote the coordinates of each
pixel and k = 1, 2, and 3 correspond to R, G, and
B intensities, respectively.

ii. Form the average matrix Aave with the same
window size using the image with moving object
A.

iii. Subtract background image Bave from the image

with moving object Aave to get matrix C.
iv. Add absolute differences of R, G, and B

intensities in each pixel in the resulted matrix C
to form the foreground matrix D.

v. Find the maximum value in matrix D.
vi. Subtract a constant value from each pixel so that

the maximum value of D becomes 255.
vii. If there is a negative number in the resultant

matrix in the previous step, make it zero and
form a new matrix R.

viii. If any number in R is greater than the threshold
− Th_Object, set matrix Obj to 1. Otherwise, set
it to 0. The value of Th_Object is 20 here.

 >

=
else

ObjectThjiRif
jiObj

,0
_),(,1

),(

In this research, the video clips of standing long

jumps were taken in a studio with a black background.
By doing so, the light sources can be controlled and
are more stable. An example of extracted object by
the above-mentioned algorithm is shown in Figure
1(b). Some small holes and ridged edges exist in the
extracted object. So the result is further smoothed by
a median filter and the smoothed silhouette is shown
in Figure 1(c).

(a)

(b)

(c)

Figure 1. (a) Input video frame (b) Extracted

silhouette (c) Smoothed silhouette

3. Skeleton extraction

To obtain pose information from the silhouette, a
representative skeleton with key points is desired. In
order to have a more efficient system, a thinning
algorithm is chosen for producing such a skeleton.
Here, the Z-S algorithm is used. The Z-S algorithm
uses a peeling approach. It is fast and it can avoid the
break-line problem. Interested readers are referred to
[6] for details of the algorithm. However, there are
still common problems for the thinning algorithm.
First of all, it can result in loops, corners, and
redundant line segments (Figure 2). Also, it is
sensitive to noise.

∑ ∑
−+

−−=

−+

−−=

=

2/)1(

2/)1(

2/)1(

2/)1(
2),,(1),,(

ni

nii

nj

njj
ave kjiA

n
kjiA

∑ ∑
−+

−−=

−+

−−=

=

2/)1(

2/)1(

2/)1(

2/)1(
2),,(1),,(

ni

nii

nj

njj
ave kjiB

n
kjiB

)3,,()2,,()1,,(),(jiCjiCjiCjiD ++=

37

 (a) (b)

Figure 2. (a) Loop (b) Corner and redundant line

To conquer the above-mentioned problems,
methods in [7] are used to produce a better skeleton.
First, the thinning result is converted into a graph.
Then, the adjacent junction vertices are removed
from the skeleton graph. An adjacent junction vertex
is the vertex that has more than one junction vertices
in its eight neighbors. This procedure can remove
redundant vertices to make sure the degree of each
node in the graph is less than or equal to 4 to simplify
the graph structure. The result is a simplified graph
version of the original thinning result. Figure 3(a)
presents one example. Broken lines can be seen
because adjacent junction vertices are removed.

Next, to avoid loops in the skeleton graph, a
“maximum” spanning tree is built. It is similar to the
minimum spanning tree, but maximum length instead
of minimum length is chosen while the tree grows.
Loops can be cut with this procedure. Because some
adjacent junction vertices are removed in the
previous step, maximum length instead of minimum
length should be found here to make sure the new
junction vertex can connect to all of its neighbors.
There exists a loop in Figure 3(a). The result from the
aforementioned loop-cut procedure is shown in
Figure 3(b). A green dot is used to separate the red
lines at the lower-left corner of the loop. In most case,
junction vertices are the intersection points between
body parts, like “head and hand” and “hand and
foot.”

Finally, we need to prune the branches caused by
noise on the resulted silhouette in the thinning step. A
branch is defined as a simple path from an end vertex
to a junction vertex. If the branch consists of less than
10 vertices, it might be a noisy (redundant) branch
and needs to be deleted. (See the lower-right corner
branch of Figure 2(b).) Only one branch can be
deleted at a time. Otherwise, both the noisy branch
and the correct branch could be removed at the same
time. Figure 4 illustrates such pruning results. Figure
4(c) is the desired result. Two more examples for
thinning results are also given in Figure 5. These

results show that the postures of the silhouettes can
be properly represented.

(a)

(b)

Figure 3. (a) A loop (b) Loop cut

(a)

(b)

(c)

Figure 4. (a) Before pruning (b) Delete both
branches (c) Delete only the noisy branch

38

Figure 5. Examples of thinning results

4. Pose estimation

Poses are to be determined by the DBN in this
research. The Bayesian network (BN) is a graph that
obeys Bayes’ theorem. It is also called the graphical
model. The BNs are directed acyclic graphs. Each
node represents a random variable and each edge
indicates that the connected nodes are causally
related. Each node has a discrete variable. Inference
of a BN is the procedure to derive the states of one
part of the nodes when the states of the other part of
nodes are known. On the other hand, learning is the
procedure to learn the random variable of the nodes
when the behavior of part (or all) of the node is
observed. DBNs are the kind of BNs that model
sequences of variables. For a detailed discussion of
DBNs, please refer to [9].

To use BNs to recognize poses, it needs to be
trained first. There are two categories of training:
qualitative training and quantitative training [8].
Qualitative training concerns the network structure of
the model and quantitative training determines the
specific conditional probabilities. In our case, the
input to the BN is the skeleton information. This
information is encoded with the locations of the key
points of the skeleton on the eight areas of the plane.
Two examples are shown in Figure 6. The output is a
predefined pose.

Figure 6. Examples of feature encoding of the
key points on a skeleton

Each BN consists of eight observed nodes (Areas

I ~ VIII), five hidden nodes (Head, Chest, Hand,
Knee, Foot), and one root node (Pose name). But this
is not enough. More information like previous pose is
needed. As in [4] and [8], several BNs are used to
decide if a certain event happens. Pose information of
previous frame is input into the DBN because it is
crucial to the pose of the current frame. Furthermore,
there are four stages in a jump. They are before
jumping, jumping, in the air, and landing. They can
be used to help determine the poses. For example,
poses belonging to “before jumping” and poses
belonging to “landing” cannot occur consecutively
because it does not exist in real cases. So a jumping
stage flag is necessary. The structures of one BN and
its DBN are shown in Figure 7. Part (a) of Figure 7
presents a BN for the “standing & hand swung
forward” pose. There are totally 22 defined poses in
our work. Part (b) of Figure 7 adds the influence of
the current jumping stage and the previous pose on
the determination of the current pose.

4.1. Training phase

When the first frame enters, we reset the jumping
stage to “before jumping” and the current pose to
“standing & hand overlap with body.” In the later
frames, the previous pose is the predicted pose in the
previous frame. Similar poses from the “before
jumping” stage and the “landing” stage can be
distinguished by the jumping stage flag. At every
training phase, we input the locations of Head, Hand
and Foot, respectively. Next, the path from Head to
Foot is used as the torso, and the waist location can
be estimated. The waist location is set to be in the
middle of the torso. Then the waist is put as the origin
and the locations of all key points (Head, Chest,
Hand, Knee or Foot) on the eight areas of the plane
can be determined (Figure 6). These locations are

39

combined as the feature vector. Once the feature
vector is received, the DBN can update the relation
strength between the current pose and the previous
pose.

(a)

(b)

Figure 7. (a) Bayesian network structure
(b) Dynamic Bayesian network structure

4.2. Testing phase

When the first frame enters, we do the same thing
as when the first frame is entering the training phase.
And we set the lowest point to be Foot because no
matter what pose it is Foot is always the lowest point.
Then we try to assign body parts to other key points
and to combine them as the feature vector to infer the
most probable pose. Once the feature vector gets the
maximum probability, we say that the pose
represented by this feature vector is the most fitted
pose.

One thing needs to be discussed next is that
different poses in the training samples do not appear

equally. For example, “Standing & hand swung
forward” appears most of the time. But “Knee and
foot extended & Hand raised forward” and “Waist
bended & Hand raised forward” may appear much
less frequently than “Standing & hand swung
forward.” Thus a threshold called Th_Pose is set for
each pose other than “Standing & hand swung
forward” to emphasize more on these poses.
Otherwise, “Standing & hand swung forward” would
dominate the decision making. If the probability of
certain pose is greater than Th_Pose, we can say that
the pose appears. When moving to the next frame, the
current pose will be input to the next frame as the
previous pose.

With a proper training on the DBN, the trained
networks can find the most probable pose for each
frame. The poses in consecutive frames can then be
used to identify incorrect movements.

5. Experimental results

Twelve video clips are used as the training set and
three others are used as the test set in our experiments.
Totally, there are 522 frames in the training set and
135 frames in the test set. The representative frames
of one of the test video clips are presented in Figure 8
to demonstrate the thinning results. The extracted
skeletons represent their respective poses pretty well.
Feature vectors from key points in these extracted
skeletons are then used as input to the DBN to
determine poses. Poses in most frames of the three
test video clips can be correctly classified by the
DBN. The overall accuracy is from 81% to 87% for
the three test video clips.

This resulted accuracy is good. But there is still
room for improvement. One reason for such a
not-so-satisfied result is that the number of training
samples is small. The probabilities of these poses
are not large enough to be accepted. Moreover, when
an “Unknown” or a misclassification appears, it will
affect the inference of the subsequent frame. So the
previous pose for the next frame should be set to the
pose that is recognized most recently instead of
“Unknown” for each DBN. From our experience, this
is really useful in dealing with the problem with
unknown poses. But a misclassified frame will still
affect the classification of its subsequent frames.
Most errors in our experiments occurred in
consecutive frames.

6. Conclusion

We have implemented a pose estimation system
for evaluating standing long jumps. The primary

40

results show that identification of pose classes is
promising. However, some refinement on the DBN is
still necessary. It would mainly be on the training
data set. More training data with better definitions of
poses are needed. Also, more partitions instead of just
eight as shown in Figure 6 can be used for feature
encoding. More information would further improve
the classification results. When the poses can be
accurately determined, incorrect movements, i.e. the
ones different from the standing long jump standards,
can be identified and advices to the jumper can be
given.

Figure 8. Skeleton extraction by thinning

Acknowledgements

This research was supported by National Science
Council of the Republic of China (Taiwan) under
grant number 95-2221-E-032-041.

References

[1] Hui-Huang Hsu, Sheng-Wen Hsieh, Wu-Chou Chen,
Chun-Jung Chen, and Che-Yu Yang, “Motion Analysis for
the Standing Long Jump,” in Proc. 26th IEEE International
Conference Distributed Computing Systems Workshops,
Lisboa, Portugal, July 4-7, 2006.
[2] Ying Luo, Tzong-Der Wu, and Jenq-Neng Hwang,
“Object-based Analysis and Interpretation of Human
Motion in Sports Video Sequences by Dynamic Bayesian
Networks,” Computer Vision and Image Understanding,
Special Issue on Video Retrieval and Summarization, Vol.
92, Issues 2-3, pp. 196-216, Nov.-Dec. 2003.
[3] Ibrahim Karliga and Jenq-Neng Hwang, “Analyzing
Human Body 3-D Motion Of Golf Swing From
Single-Camera Video Sequences,” in Proc. 2006 IEEE
International Conference on Acoustics, Speech and Signal
Processing, Vol. 5, 2006.
[4] Sangho Park and J. K. Aggarwal, “Recognition of
Two-person Interactions Using a Hierarchical Bayesian
Network,” in Proc. First ACM SOGMM International
Workshop on Video Surveillance, Recognition section, pp.
65-76, Berkeley, CA, USA, Nov. 7, 2003.
[5] Sunil S. Polmottawegedara, Ranjith Munasinghe, and
Asad Davari, “Tracking Moving Targets,” in Proc. the 38th
Southeastern Symposium on System Theory, Cookeville,
TN, USA, March 5-7, 2006.
[6] S. Zhang and K. S. Fu, “A Thinning Algorithm for
Discrete Binary Images,” Proc. the Int’l Conf. on
Computers and Application, pp. 879-886, Beijing, China,
1984.
[7] B. Kegl and A. Krzyzak, “Piecewise Linear
Skeletonization Using Principal Curves,” IEEE Trans on
Pattern Analysis and Machine Intelligence, Vol. 24, No. 1,
pp. 59-73, Jan. 2002.
[8] C.-L. Huang, H.-C. Shih, C.-Y. Chao, “Semantic
Analysis of Soccer Video Using Dynamic Bayesian
Network,” IEEE Transactions on Multimedia, Vol. 8, No. 1,
749-760, Feb. 2006.
[9] David Edwards, Introduction to Graphical Modeling,
2nd edition, Springer, 2007.

41

